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Then

(4.20) 
E{[~~ ckX

~)} � (v! a
q 

+ D~ ]~~ 2[~ b~I c k I1] .

In the case that g is symmetric, the quantity aq in (4.20) may be replaced by

~ k k —iI
(4. 21) a 

[
~v_l) ~ 

... ~ g~(j1
,...,j 2, i~

j
~q kl  j

1
=1 

~v—2~~

REMARKS. (I) For asymptotic applications, the most effec tive choice of q

in the use of the preceding result is q = 1, In which case y = 2 and (4.20) takes

the form

(4.22) E(SV } � [vi a
1 + D J v/2JI

~ 
b~c~~

Whereas the cases corresponding to q > 1 entail a smaller quantity aq 
in place

of a1, the factor

n
(4.23) [

~ 
b~~Ic~JJ

is larger for these cases than for the case q 1.

(Ii) Under related but different conditions, Môricz (1976) establishes, in

the proof of his Theorem 1, a result of the form (4.20) for the case that the bi’s

are bounded: b
1 

S K < ~ (all I). In the role of aq~ 
M6ricz uses

(4 .24) m r ~ 
•.. 

~ E~ {X
1 

•..
~~ 

)~
jq 1

_ 
~~~~~~~~~ .. ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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With

= SUPi E {X
~

X
i+~~~

”0X
i+~~~÷ + 1

}L.

it is seen that aq 
�‘ m

q and hence Corollary 4.4 applies to a larger class of

sequences {x~
} then covered by Móricz ’ result. Also , Hóricz ’ results a~e

confined to the case q � 2. On the other hand , in Móricz ’ results the factor

-• (4.23) appears with y replaced by p, which , by (4 .7b) , yields a sharper factor

in the case q � 2. Note that in this case the most effective choice of q for

asymptotic applications is q = 2. 0

THEOREM 4.5. Let X1,”~ ,X satisfy b~ = E {X~} < ~~~, 1 � I � ii , for an even

integer v. Suppose tha t, for  a symmetric function g of ½v arguments,

(4 .25) IE {X 1 ”°X 1 } l  S g(i
2-i~ , i4

_i3, .~~~
,i~

_i
~~ 1)b i ’”b j

for all 1 S i
~ 

<“~~~< 5 n. Let q � 1 be given. Put

1

(4 .26) 
~qn = 

L~
v l ) ! k~ l 

~~~~~~~~~~~~~~~~~~~~~~~ k~~~

Define y by (4 . 7)  and D
~ 

by (3 .9) . Then

(4 .27)  E{[~~ ckx
k j }  

� [ V i8
q~ + DV]~2L~ b~ I c k Ij  .

PROOF . First an upper bound on I E {W~}l is obtained . Put di 
= b1I c i l .  Also ,

denote ~v by m there con”enient . Take the case q > 1. By (3.11), (4 .25) ,

the inequality 2ab S a 2 + h 2 , and HOlder ’s inequality,

_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



-- .—- ~.- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

IE {W~}l S vt ~ ~ 
d •‘.d g(1

2
—i , i

4
—i3,...,i —i

lsi <...<i �n i. V V
1 v

: � 0~~~~ ~ ~~~~~~~~~~~~ ~ ~ ~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

t 1�i <”.<j �n 1. vJ L1�i1< <I Sn 1

S V![~ ~~~~~ ~~
m 

~ (d~ +d~ )(d~ +d~ )~~ •(d~ +d~ ) x

-• L k l  J L l�I1<” °< i~~n 1 2 3 4 v—l v

I
x g~~(j 2

_j 1, i4
_i

3~
•
~~~ 1v

_I
v 1~

J

~~ ~~~~~~~~~ ... 
~~~~~~~~~~~~~ d~ ~~~~~

Lk=l J L l�i1< . . ° < i �n  j 1=l j 2=3 
~~~~~~ ~i

2 4 

g~(j2
_j1,

(4.28) � ~1r~ d~Pri~
_m 

~ B 
~ ...Li~”1 =1 L j 1 l j 2—3 

~m~~
’1  :Il~ 2’ ‘

where

L 

(4.29) B = ~~ ~~~~~ g~(j2
_1 I ~I3~~

••~ I 
~~~~~~~~~~~~~~‘ m 1�i <°~~<i Sn j j j V

• 1 v 1 2 m

As an example of the technique used to place a suitable bound on B

U’consider B1 .~ ~ ~
. The other 2 — 1 terms in (4.29) may be handled In• L ,_ J~~ J~ ,V~ a.

similar fashion. Define 

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~
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= {(ii, ... ,i~): 1 � i~ <...< I
~
�n and i~~—i~~_~ = max {i2—i1, i4—I 3P •

~~
• ,iv

_iV_l }}

for L a l,2,~ ’’ ,m, and denote swmnation over (I ,“°,i ) € J~ by ~ . Then1 v

m
B S T y  ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~ ‘~~ - 4 - i  )
l,3,5, ”,v—1 (J~) ii 

j
3 

t~~~~ ‘ V

m n— ui-i n-v+3 n-i
— 0~~~~ ~~~~~~~~~~~~~ ~

Lal i
1
=1 1

3
=1
1
+2 i

~~i
=i

3
+2 1 3 v—i

- 
• ~~) £

4 _ i j  — 1 n
x ~ g~ (i

2
_i1, i4

_i3, .~~~.i~ _i~ _1)
i~~ i~+i i4

i
3
+1 i~~ i~, 1 +l

(j ,.. i)  C

~ .“ ~~ ~~~~~ ~
£=l isi <°~~ <i �n 11 3 v—i1 v

ft ~2C12t-1 ~2(~~21-l
X 

.

~~~ “°
. ~ 8

q(j
1
,~ ..,j, 1, 1

~~~
1
2•e l~

~~~~ ~½v—l~~

~ (rn—i ) ! ~ 
d~
j 

8~~(m-i)! = ~~~ d~
j ~~~~~~~ 

. 
•

It thus follows that

V

S v![~ d~~Jf ~ d~
J 

8qn

( 4 . 3 0 )  < V~~

[

~ d~J 
8 .

U ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~~~~~ ~~~~~ •~~~~~~~~~~~~~ -•- 



p

19

For the case q = 1, a similar argument without the use of Holder ’s inequality

leads to (4.30) . Note that (4.30) is the same as (4 .14), except with 8qn in place

of 0qn~ 
The proof is now completed In the same way as the proof of Theorem 4 .3

following (4.14) . 0

REMARK . The case of (4.30) corresponding to v = 4, g(j1,j2) min(f(j
1

) , f(j2) ) ,

and q = 1 was in effect established by Révész (1969), as may be seen from a careful

scrutiny of the proof of his Theorem 1IM—3 . His method of proof has been utilized . 0

The following two corollaries of Theorem 4.5 are immediate. The first result

specializes to Conditions 81 and B2. The second result pertains to the case of

cn infinite sequence {x1}.

COROLLARY 4 .6. Let X1, o • . ,X satisfy b~ = E {X~} < ~~, 1 � I S n , for an even

integer v. Suppose tha t, for a function f ( j )  and for  all 1 5 11 <~~~~~ < i~ S n ,

either

(4.31) ~E {X
1 

•..x 1 }~ � min{f(i
2
_i
i
) , f(i

4
-I3

) , ...,f(i
~
-1
~~i

)}bj •“b11 1 V
or

(4.32) 1E 1 ”x1 }I  S f (i 2
_I

i) f ( i4
_ i

3) . .f ( i
~

_i
~~ 1)b

i
...b j  .

Let q � 1 be given. Put

(4 . 33) - 

[~~~~
1!

~~ 

k~~~ lf~~
(k)]

~

and 1

(4 .34) 82) 
[o~v-i) ! k~l ~~~

Define y by (4.7) and 
~~ 

by (3.9) . Then
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• (4. 35) 
E{[~~ CkX

~} }  
S [v! Bqn + D~ ] V/ 2 

~I~i 
b
~ Ickij~~~

with 
~qn given by 82) i f  (4.31) is assumed and by 82) if (4 .32) is assumed.

COROLLARY 4 . 7 .  Suppose that the assumptions of Theorem 4.5 or Corollary 4 .6 ,

for fixed v , g, f and q, hold for  all n = l,2,.°~ . Let 
~q 

be given by

1 V
-• 

(4 .36) 8q = 

~~~v-l)! ~ - 

~~~~~~~~~~~~~~~~~
k- j 1~- j~-

if (4.25) is assumed, by

1

(4.37) 
~q 

= 

f~~
V~l)! k~l 

k~~~
1 
f~ (k~

J

if  (4.31) is assumed, and by

(4.38) = 

[(~ v~ 1)! {Jl 
f (1

(k)]~~~~

i f  (4 .32 )  is asawned. Then

(4.39) 
E{[~~ ck~~ } }  

� [v ! 
~q + D~ 1~~2[~ b

~ ickI1J

For q = 1, the version of Corollary 4.7 cor ding to Condition 81, i.e.;

corresponding to assumption (4.31), has been given by Gaposk in ( 1972), under the

additional condition that f(’) is nonincreasing.

In many typical situations, both (4.31) and (4.32) are satisfied , in which

case the use of both (4.37) and (4.38) arise as options for c~ns1deration . However,
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the requirements on f ( ” )  for finiteness of 
~q are milder in the case of (4.38)

than in the case of (4.37). Namely, finiteness of ~~f~(~) instead of

is required . For example , consider the stochastic process

(4 .40) X( t )  = 2~~~[~~
2 (t)  — 1]

where ~(t) is a Gaussian process with E{~ (t)} E 0 , E{~~
2 (t)} E 1, and

E{ F~(t) F~(t + t ) }  = R ( r ) .  This physically realizable stochastic process X(°) is

considered by Magness (1954) for quantitative illustration of non—Gaussianity .

• Consider the associated discrete—time sequence (X
k
}, where = X(k) , k = 1,2 , ’”

It is readily seen that

(4.41) I E{X1 
x1 x~ x1 }l S l5~R(i2-i1)R(i4-i3)J

for  all 1 5 i~ <“~~~ < ~~~ under the assumption that R(r)  is nouincreasing as

I i i increases . Thus {Xk} satisfies Condition B1 with f(j) = /1~~ IR(J)I ,

provided that 
~~jIR(j)i 

< . Also , {X k
} satisfies Condition B2 with the same

f(j), provided merely that ~1i R (j ) I  < =. (Here we have taken q = 1.)

A moment inequality for S under Condition C will now be presented .

THEOREM 4.8. Let X
1
,°’.,X satisfy b~ = E{X ~ } < =, 1 < i s n , for  an even

integer v . Suppose tha t, for  a function f (j) and a synnietric function g of

~~v-1 arguments,

(4 .42) I E {X 1
.. .X

~~ }! � ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

fo r  all 1 � i~ <“ ‘<  i~, < n . Let q � 1 be g iven. Put

L . .-~~~~~~~~ - “ •“• -
~~~~~~~~~- -~~~~~~~~~~
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1
T~v_ l n 1 q

(4.43) ~ 
= [ 

~ 

,. . .o  
~ g° (j 1, ’~~’ ‘3hcvq 

~=l j~=l j1
=i 

~e i
=1 

~f ~~v—l ’ 
-

De r ine y by (4.7) and D L~’ (3.’~) . Then

v 1 V/ 2 —

(! . •‘)  
E {[~~ C!(~k} } ~ ~~~~~~~~ 

f a (k
)}

~ + D~~ 
[~~ i 

b~~I c
kj

• The proof is similar in technique to that of Theorems 4.3 and 4.4 and so is

‘I omitted . Likewise , the extension to the case of an inf ini te  sequence is clear.

• The next moment inequality for S~ will be derived under the product—moment

exchangeable restriction which was discussed in Section 2.

THEOREM 4 .9 .  Let X1,-.° ,X satisfy b~ = 
~~ , I � i � n , for an even

integer v. Suppose that, for  a cons tant 
~~~~~

(4.45) E~ X “~x } =. ~ b ‘~~‘bi i v ,n I  I1 V 1 V

for all 1 5 i
~ 

<. ‘
~ ‘<  i

V 
S n. Put

(4 .46) A ~~ b c ‘‘‘b . cn (v) I1 i~ 1
V 1

\)

Then

V — v / 2  v /2  v12
(4. 47) 

E{{~~ 
CkXkJ 

} 
~ [G~~~

IA~{~~ 
b~c~

] 
+ D v
] {J1 b~ c~

}

PROOF. Since by the definition of

IE{W }f S IG IAV v ,n n
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the proof follows that of Theorem 4.3.  11

Condition (4. 1i5) would be satisfied by an exchangeable seouence of random

variables . An application of this theorem to rank statistic orohiems “ill he

presented in Section 5.

The final two results of this section present moment inequalities in ~‘hich

bound on S~ } is ~ ction of t11c mixin~ numbers of t~ie sequence

COROLLARY 4.10. Let ~X1
} be s trictly stationaru with 0, stron~ lu

mixing, and bounded: JX ~J S C , all  1. Suppose that ~ = ~~~ j cb~ < , ~ii2ere {~~ } are

~ ie Roaenblatt nli3ing nunbers . Define fl 4 by (3~ q)  Then, f0v’ a ll  n,

(4.4~) E{[~~ ~1 x1~ 4} ~ C~ [24~ + D4]2[~~ c~}2

The proof follows from Corollary 4.~ sfnce~ un
der the above assumptions .

{~~~~. }  satisfies Condition ~l, as was ‘ioted in Section 2. Corollary ~.l0 broadens

Le~n~o 2’).4 of l illingslev (l0~~). 1e obtains essentially the same bounds, but

assumes a more stringent mixin~ conr1ition~ in particular, his rllxjn ’ numbers {~~~
}

satisfy S 
~~

. Furthermore, his surimahility conHtion on the ~‘~~s is

< ~~ , a stronger restriction than < ~~.

T~~rOR!.~ i 4.11. Le~ {X ~
} be a t~tri~ tZ ~y stat nriari~ •geauence ~‘i th E 0

and bounded: !x 1 1 � C. all I .  Let ~( T J) be the mixinq numbe”s f0yi Put

n k
• (4 .49)  = ~ ~~(°‘ 

1-) 4(~~ I )

L k=1 1=1
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• and

n— 3 n—2 n— l
(4.50) e = ~ m in {4 ( O :j 1, j 2 ,j 3) ,4 ( O , j 1;i 2 ,i 3) ,~~(0 ,j 1,i 2 i 3

) }

11 1 
~~~~~~ 

jfj2+l

Then~ fo r  all n ,

n 
2

(4.51) 
E{[~~ cl Xk} } � C 4 [96 14r + O ( ~~ c~ )/ (~?c~ ) 2 } + D J [ ~ c~

J

PROOF . By a lemma of lbragimov (1962), for i~ < i~ < 1
3 

< 14 and with

g(j 1
,j

2
,j 3

) min{~~(0;j 1,j 2 ,j 3
),~~(O ,j 1

;j 2,j 3
), ~ (O ,j1

,j
2
;j 3

)}

s 16C 4 
“‘~*~ 

~(i3;i4 ) + g(i 2-i1,13-i1,i4-i 1) .

Thus f .

= 4! (E{ ~ ~~
.. ~ c~ ...c

1 X~ ~~~~~~ } l
1 4 1 4

S 384C~ ~ 
.“ ~ 1c 1 ~~~~ ~~~~~~~~~~~~~~~~ 

+
1. 4

96C
4 

~ ~ 1c 1 •“c~ g(i 2
-11, i3

-i
1
,14

-1
1

)
1�i~<’  ‘<j 4�n 1 4

S 96C
4
f4 t ( ~~~ c~)

2 + o~(~~ c~ ) 1 .

The proof is completed by combining this bound with the hound on E(Z4} as was

done in the proof of Theorems 4.3 and 4.4. ¶1
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Ta the next section, Theorem 4.11 will be combined with a result of Mum and

• Rosenblatt (1956) to obtain a central theorem for sums of bounded functions of

strongly mixing random variables.

5. Applications of moment inequalities. The first application is concerned

with the question of almost sure convergence of an infinite series 
~~ ~~~~ 

subject

- • 
to mild restrictions on the growth of the constants c~ and mild dependence

restrictions on the random variables {X
1
}. A consequence of Kolmogorov ’s classical

“ three series criterion” is that  if the X 1’s are mutually Independent wi th C) means

and variances 1 and if the c1
t s satisfy 

~l 
c
1 

< ~~, then 
~~ 

c1X 1 converges almost

surely . If the dependence restriction is reduced in strength to orthogonality,

• then results due to Rademacher (1922), Men~ov (1923), and Tandori (1957) show that

the condition 
~~ 

c~ < is not strong enough to insure the almost sure convergence

2of 
~~ 

c1X1. Rademacher and Men~ov ’s results placed the condition 
~l 

c1
(log I) <

on the c1’s in order to obtain the almost sure convergence of ~~ c1X1, where the

• X
1
’s are orthogonal with mean 0 and variance 1. Koml6s (1972) obtains the almost

sure convergence of ~~ c1X1 
under the conditions that ~~ c~ < , and the X

i
’s

are multip licative of order v , for  an even integer V � 4 , E {X~~} < K < (all I) ,

E {X
1
) 0 and Var(X~) E 1. This result  was effective ly improved hy ~

‘.aposkin (1972),

who Introduced a dependence restrict ion similar  to Condit ion 91 in place of the

multiplicative of order v assumption . A theorem ~‘hich allows Condition A ,

Condition B ,or Condition C to rep lace the multiplicative of order V restriction

in Koml6s result will now be proved. Gap~skIn ’s result will be obtained as ~

corollary to this result. In the proof of the almost sure convergence result,

the following maximal inequality will he used.
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THEOREM 5.1. (Longnecker and Serf ling (1976)) .  Let ~~~~~~~~ be arbitrar~j

random variab les. Suppose that fo r  con8tants v > 0 and y > 1, and for all po8itive

A ,

(5.1) 
~ ~~~~ ~ A

_V
[ g(i , j ) ]Y (al l  1 � i � j s n)

k— i

where g satisfies g(i,j) + go + 1, k) S g(i, k). Then for all positive )~,

(5.2) 4 max 
~ k � A~ � C x

_ v
[g( l , n) ]~

~1�i�n k=l J V~~•(

where C~~1 
is a constant depending on only v and y

With g(i, j) = K[ ~ b~c~ J , where K is defined by (4.20), (4.39) or (4.44),
k-i

Theorems 4.4 , 4.7 , and 4.8 in conjunction with Chebyshev’s inequality demonstrate

that condition (5.1) is satisfied with y = ~v and 
~k 

= ckXk~ 
where the X.K

’s satisfy

either Condition A, Condition B, or Condition C. Thus, for random variables satisfy ing

any one of the three dependence restrictions Condition A . R , o’ C . the maximal

inequality of Theorem 5.1 is applicable.

THEOREM 5.2. Let the sequence {x~
} satisfy, for any even integer v > 2,

either Condition A, Condition B, or Condition C, and b1 
= E {X~ } < (all  i ) .  Then

• the condition ~~~ b~c~ < inrplies the almost cure convergence of 
~~ 

CkXI~
.

PROOF . Assume ~~ b~c~ < . With Y • 
~~ 

C
k

Xk , It will be shown that 
~~

converges almost surely b~y showing tha t the sequence {Y~) is almost surely (‘.auchy ,

that is , satisfies

P(IY — Y  ~~0 a s m , n~~~°’} — 1 ,a m
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or, equivalently,

(5.3) 
P{

maxlY — Y l  > x} + 0, as m -
~ ~~ , for each A > 0

n�m

By the remarks following Theorem 5.1, it is seen from (5.2) that

1 1 M
(5.4) 

Pj 
max — ‘e

m ’ 
> 

xJ 
< ~—V

8 ~ b~c~
mSn�M k=m

where does not depend on in and M. If M ~ in (5.4), then

1 1 1v/2

• (5.5) P fm ax lY — Ym i > 
Af 

� A V
8L~ 

b~ c~
Jn�m k-tn

~ 2 2Since 
~l 

bkck 
< ~~, the right—hand side of (5.5) tends to 0 as m -

~~ ~~~, establishing

(5.3). 0

Results similar to Theorem 5 .2  for random variables sat isfying either Condition

Bl or Condition B2 follow immediately from Theorem 5.2. The result for Condition

Dl is essentially the same as Theorem 3 of Gap~ skin ( 1972), although he implicitly

• • assumes that f is nonincreasing . In the case of a sequence of random variables

satisf ying both (2 .3a) and (2.4a) of Conditions 81 and B2 , the almost sure convergence

result for variables satisf ying Condition B2 is a more general result than the one

for Condition 81. This is evident upon examination of the summability conditions

(2.3b) and (2.4b).

• In comparing the relative strengths of Gap6skin’s result and Theorem 5.2, it is

• of interest to examine the case of a stationary Gaussian time series {x k) with

E {X.K
) 0 and Var(X.~) 1. By (2.6) it is easily seen that if lR(k)~ is
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nonincreasing, then 1 E{X X X X } I � 3 min{R(i —i ),R(i —i )) .  Gaposkin ’s result

• 
~~ 2• would then give that 

~~ 
CkXSK converges almost surely if 

~l 
Ck < and ~1kR(k) < ~~.

Further examination of (2.6) reveals that this sequence satisfies a combination of

Condition 82 and Condition C. Hence, by Theorem 5.2, 
~~ 

ckXk 
converges almost

surely if 
~l 

Ck 
< and R(k) < ~~. Thus the restriction placed on the covariance

function R(k) by Caposkin~s result can be relaxed via Theorem 5.2.

A second area of application of moment inequalities concerns rates of

convergence in the central limit theorem for linear rank statistics. Under suitable

assumptions, Jurecková and Purl (1975) establish - that the rate of convergence

of the cumulative distribution function of the simple linear rank statistic

N
SN 

— 

i=l 
CNi 4~ N + i.

to the normal distribution function is O(N ~~~~
5 ) f or any 6 > 0, where 

~~~~~~~~~~

are known constants, RNl,~ ’ ~~~~ 
are the ranks of the independent identically

distributed observations 
~~~~~~~~~~~~ 

and 4(’) is a score generating function.

Their technique of proof consists of two main steps, the first of which is to

establish the following lemma.

LEMMA (Jurocková and Pun). Assume thizt the constants CN l , ’
~~

ICNN satisfy

~~ 
C
Ni 

0, ~~ C~~ = 1 and max C~~ = O(N~~1ogN ) .  Let the first  deri vative of

$(t) exist and be bounded in (0,1). Then corresponding to any positive integer

k, where 2k+l < N , there exists a constant B(k) > 0 and a positive integer Nk

such tha t for  all N > N
k

E{ (S
N 

— TN)
2k } � B(k)N~~



~ 
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where T
N 

= 

~ 
cNi 4) (F(x i))  and F is the cdf of X 1 .

The second step is an application of standard results (Loève (1965), p. 288) to

obtain the rate of convergence of the cd~ of T
N to the normal cdf. These two

results are then combined to yield the desired rate of convergence.

The proof of the above lemma is tedious and hence an alternate method of

proof is desirable. Since {R~~ 
— 4 ( F (X

1
) ) }  is an exchangeable sequence and

E {(R
NI 

— $( F (X
1

) ) )  } = O(N ) ,  Theorem 4.9 directly yields the desired bound on

E {(S
N
_T
N)

2k). Thus the methodology of obtaining this rate of convergence has been

simplified since the proof of Theorem 4.9 is more straightforward than Pun and

• Jurecková ’s lemma . Moreover, Theorem 4.9 is more general.

A moment inequality plays a major role in proving a central limit theorem

for sums of functions of mixing random variables. In Gastwirth and Rubin (1975),

a central limit theorem is proved for sums of the form 
~~ 

f (X
i
) ,  where f is a

bounded function and {x1} Is a strongly mixing stationary sequence. The following

theorem broadens their result.

THEORE)! 5.3. Let {X
1
} be a strongly mixing stationary sequence. Suppose

tha t the mixing numbers of {X 1} satisfy

(5.6) ~ ~ (O~ k) <

k-i
and

n—3 n—2 a-i
(5.7) ~ ~ min{~ (0~j1,j2,j3),4(0,j1;j2

,j
3

) ,~~(0,j1,j2~j3)} = 0(n)
j
1
=l j

2 u i
+l j3

=j
2+1

Then any random variable of the f o rm S = ~~f (X
1
), where f is a bounded function,

• is asymptoticall y normall y distributed, tha t is,
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4 2• (5 . 3) n (S
n 

— E{S~}]—*N(0, a )

z~here a 2 
= Urn ri 1

~Var(S }.

- 

• ___ n

PROOF. Let Y~ = f(X~
) — E {f(X

1
))  and let K be a cons tan t such that

I f ( x ) I S ~iK for all real x. With c
1 

1, Theorem 4 .11 implies that

E{{~~ ~) } S K~ [96 (4t + fl~~~~~ ) +

where t and 8~ ore defined by (3.49) and (3.50) respectively . By (5.?),

°n 
— 0(n) and since t S (~~ ~~

O ; k)) 2 < , it follows that

(5.~ ) E {(
~~ Y1

)4} = O(n 2)

Furthermore, (5. ‘), the stationanity of ~Y1
} and the condition S K immedIately

inpl~. that

(5. 10) E {(
~~ 

~~)2} h(n) as a --

where h(n) = n(E{Y~
} + 2~~ E {Y

OYk
}). By (5.~) and (5.~

’
~),the conditions of the

Blum—Rosenblatt (1956) theorem hold and hence (5.~) follows. 0

The method of proof of Gastwirth and Rubin (1975) has been simplified . Also

Theorem 5.3 slightly relaxes their conditions on the mixing numbers since they

require

~ min{~~(O ,j ; k ) ,~~(O~j , k) ,~~(O ,k ;j ) }  0(n)
j�k l�j+ksn

along with restrictions (5. ( )  and (5. 7 ) .  Since the conditions of Theorem 5.3 hold
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whenever ~~ k
2p (0; k) = 0(n) , the calculations of Gagtwirth and Rubin demonstrate

that the double—exponential , the Gaussian Markov, and the Cauchy processes all

satisfy the conditions of Theorem 5.3. (These processes also satisfy the conditions

of the Gastwirth—Rubin Theorem.)
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